Title of article :
Weak Explicit Matching for Level Zero Discrete Series of Unit Groups of pAdic Simple Algebras
Author/Authors :
Silberger، Allan J. نويسنده , , Zink، Ernst-Wilhelm نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-352
From page :
353
To page :
0
Abstract :
Let F be a p-adic local field and let Ai× be the unit group of a central simple F-algebra Ai of reduced degree n > 1 (i = 1, 2). Let mathcal{R}2 (Ai ×) denote the set of irreducible discrete series representations of Ai ×. The "Abstract Matching Theorem" asserts the existence of a bijection, the "Jacquet Langlands" map {cal JL}A2A1 : mathcal{R}2 ( A1×) to mathcal{R}2 ( A2 × ) which, up to known sign, preserves character values for regular elliptic elements. This paper addresses the question of explicitly describing the map mathcal{J} mathcal{L}, but only for "level zero" representations. We prove that the restriction mathcal{J} mathcal{L}A2,A1 : mathcal{R}0 2 (A1 ×) to mathcal{R}02 (A2×) is a bijection of level zero discrete series (Proposition 3.2) and we give a parameterization of the set of unramified twist classes of level zero discrete series which does not depend upon the algebra Ai and is invariant under mathcal{J} mathcal{L}A2,A1 (Theorem 4.1).
Keywords :
characterization of distributions , Mellin transform , Bessel process , Brownian motion , Levy process , gamma process , Meixner process , Riemann zeta function
Journal title :
CANADIAN JOURNAL OF MATHEMATICS
Serial Year :
2003
Journal title :
CANADIAN JOURNAL OF MATHEMATICS
Record number :
72509
Link To Document :
بازگشت