Title of article :
Certain Operators with Rough Singular Kernels
Author/Authors :
Chen، Jiecheng نويسنده , , Fan، Dashan نويسنده , , Ying، Yiming نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-503
From page :
504
To page :
0
Abstract :
We study the singular integral operator T(Omega),(alpha) f(x) = p.v. ... b(|y|) Omega (yʹ)|y|^(-n-(alpha)) f(x-y) dy1, defined on all test functions f, where b is a bounded function, alpha >= 0, Omega(yʹ) is an integrable function on the unit sphere S^(n-1) satisfying certain cancellation conditions. We prove that, for 1 < p < infinity, T((Omega),(alpha)) extends bounded operator from the Sobolev space Lp(alpha) to the Lebesgue space Lp with (Omega) being a distribution in the Hardy space Hq(S^(n-1)) with q= (n-1)/(n-1+(alpha)). The result extends some known results on the singular integral operators. As applications, we obtain the boundedness for T((Omega),(alpha)) on the Hardy spaces, as well as the boundedness for the truncated maximal operator T*(Omega),mʹ.
Keywords :
brown dwarfs , low-mass , Data analysis , methods , Techniques , radial velocities , stars , binaries , spectroscopic , Individual , HD 41004
Journal title :
CANADIAN JOURNAL OF MATHEMATICS
Serial Year :
2003
Journal title :
CANADIAN JOURNAL OF MATHEMATICS
Record number :
72513
Link To Document :
بازگشت