Title of article :
The influence of iron and sulfur mineral fractions on carbon tetrachloride transformation in model anaerobic soils and sediments Original Research Article
Author/Authors :
Hongbo Shao and Liye Chu ، نويسنده , , Elizabeth C. Butler، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
7
From page :
1807
To page :
1813
Abstract :
The objective of this research was to identify the dissolved species or solid phase mineral fraction(s) best correlated with rates of carbon tetrachloride (CT) reductive transformation in systems modeling sulfate-reducing and iron oxide-rich soils and sediments. We used sulfide (S(-II))-treated goethite as our model system, but also studied Fe(II) and S(-II)-treated goethite, Fe(II)-treated goethite, pure FeS, and Fe(II)-treated FeS in order to isolate and evaluate the influence of different mineral fractions on reaction rates. Initial rates of CT transformation were measured for different pH values and concentrations of added Fe(II), as well as different aging times and conditions. The following dissolved species and iron and sulfur mineral fractions were quantified and compared with CT transformation rates: aqueous Fe2+ and S(-II), surface associated Fe(II) (including weakly and strongly bound Fe(II)), FeS(s), and Cr(II) reducible solid phase S. Over the pH range of 6–10, CT transformation rates were correlated with surface associated Fe(II), while at pH 8, rates were correlated with weakly bound Fe(II). Aging of S(-II)-treated goethite led to oxidation of surface sulfur and a change in the concentration of weakly bound Fe(II), but did not change the relationship between initial rates and weakly bound Fe(II). The results of this research suggest that surface associated Fe(II) and weakly bound Fe(II) could serve as indicators of the potential for abiotic CT dechlorination in natural soils under sulfate-reducing conditions.
Keywords :
Sulfate-reducing environment , GOETHITE , Reductive dechlorination , Natural attenuation , carbon tetrachloride , Weakly bound Fe(II)
Journal title :
Chemosphere
Serial Year :
2007
Journal title :
Chemosphere
Record number :
725309
Link To Document :
بازگشت