Title of article :
Prediction of molecular diffusivity of pure components into air: A QSPR approach Original Research Article
Author/Authors :
Mehdi Sattari، نويسنده , , Farhad Gharagheizi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
5
From page :
1298
To page :
1302
Abstract :
The molecular diffusivity of 378 pure components into air was predicted using genetic algorithm-based multivariate linear regression (GA-MLR) and feed forward neural networks (FFNN). GA-MLR was used to select the molecular descriptors, as inputs for FFNN. The correlation coefficient (R2) of obtained multivariate linear seven-descriptor model by GA-MLR is 0.9334 and the same value for generated FFNN is 0.9643. These models can be applied for prediction of molecular diffusivity of pollutants into air in case of air pollution studies.
Keywords :
Molecular diffusivityQSPRGA-MLRAir pollution
Journal title :
Chemosphere
Serial Year :
2008
Journal title :
Chemosphere
Record number :
726299
Link To Document :
بازگشت