Title of article :
Effects of nonylphenol on the growth and microcystin production of Microcystis strains
Author/Authors :
Jingxian Wang، نويسنده , , Ping XIE، نويسنده , , Nichun Guo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
Both organic pollution and eutrophication are prominent environmental issues concerning water pollution in the world. It is important to reveal the effects of organic pollutants on algal growth and toxin production for assessing ecological risk of organic pollution. Since nonylphenol (NP) is a kind of persistent organic pollutant with endocrine disruptive effect which exists ubiquitously in environments, NP was selected as test compound in our study to study the relationship between NP stress and Microcystis growth and microcystin production. Our study showed that responses of toxic and nontoxic Microcystis aeruginosa to NP stress were obviously different. The growth inhibition test with NP on M. aeruginosa yielded effect concentrations EbC50 values within this range of 0.67–2.96 mg/L. The nontoxic M.aeruginosa strains were more resistant to NP than toxic strains at concentration above 1 mg/L. Cell growth was enhanced by 0.02–0.2 mg/L NP for both toxic and nontoxic strains, suggesting a hormesis effect of NP on M. aeruginosa. Both toxic and nontoxic strains tended to be smaller with increasing NP. But with the increased duration of the experiment, both the cell size and the growth rate began to resume, suggesting a quick adaptation of M. aeruginosa to adverse stress. NP of 0.05–0.5 mg/L significantly promoted microcystin production of toxic strain PCC7820, suggesting that NP might affect microcystin production of some toxic M. aeruginosa in the field. Our study showed that microcystin excretion was species specific that up to 75% of microcystins in PCC7820 were released into solution, whereas >99% of microcystins in 562 remained in algal cells after 12 days’ incubation. NP also significantly influenced microcystin release into cultural media. The fact that NP enhanced growth and toxin production of M. aeruginosa at low concentrations of 0.02–0.5 mg/L that might be possibly found in natural freshwaters implies that low concentration of NP may favor survival of M. aeruginosa in the field and may play a subtle role in affecting cyanobacterial blooms and microcystin production in natural waters.
Keywords :
Microcystin , Nonylphenol (NP) , Algal growth , Microcystis aeruginosa
Journal title :
Environmental Research
Journal title :
Environmental Research