Title of article :
Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L.
Author/Authors :
Maria I. Silva Gonzaga، نويسنده , , Jorge A.G. Santos، نويسنده , , Lena Q. Ma، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
7
From page :
254
To page :
260
Abstract :
This greenhouse experiment evaluated the influence of arsenic uptake by arsenic hyperaccumulator Pteris vittata L. and non-arsenic hyperaccumulator Nephrolepis exaltata L. on arsenic chemistry in bulk and rhizosphere soil. The plants were grown for 8 weeks in a rhizopot with a soil containing 105 mg kg−1 arsenic. The soil arsenic was fractionated into five fractions with decreasing availability: non-specifically bound (N), specifically bound (S), amorphous hydrous-oxide bound (A), crystalline hydrous-oxide bound (C), and residual (R). P. vittata produced larger plant biomass (7.38 vs. 2.32 mg plant−1) and removed more arsenic (2.61 vs. 0.09 mg pot−1 arsenic) than N. exaltata. Plant growth reduced water-soluble arsenic, and increased soil pH (P. vittata only) in the rhizosphere soil. P. vittata was more efficient than N. exaltata to access arsenic from all fractions (39–64% vs. 5–39% reduction). However, most of the arsenic taken up by both plants was from the A fraction (67–77%) in the rhizosphere soil, the most abundant (61.5%) instead of the most available (N fraction).
Keywords :
Arsenic fractionation , arsenic , Phytoextraction , rhizosphere
Journal title :
ENVIRONMENTAL POLLUTION
Serial Year :
2006
Journal title :
ENVIRONMENTAL POLLUTION
Record number :
730724
Link To Document :
بازگشت