Title of article :
Iterative weighted least-squares estimates in a heteroscedastic linear regression model
Author/Authors :
Inoue، Kiyoshi نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
The aim of this study is to improve the efficiency of weighted least-squares estimates for a regression parameter. An iterative procedure, starting with an unbiased estimate other than the unweighted least-squares estimate, yields estimates which are asymptotically more efficient than the feasible generalized least-squares estimate when errors are spherically distributed. The result has an application in the improvement of the Graybill–Deal estimate of the common mean of several normal populations.
Keywords :
Orthogonal parameter , Tensor , Score bias , Nuisance parameter , Efficient score , Information bias , Local power , Orthogeodesic model
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference