Title of article :
Metal contamination and solid phase partitioning of metals in urban roadside sediments
Author/Authors :
Pyeong-Koo Lee، نويسنده , , Youn-Hee Yu، نويسنده , , Seong-Taek Yun، نويسنده , , Bernhard Mayer، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
18
From page :
672
To page :
689
Abstract :
This study was undertaken to assess the anthropogenic impact on metal concentrations of urban roadside sediments (N = 633) in Seoul city, Korea and to estimate the potential mobility of selected metals (Zn, Cu, Pb, Cr, Ni, and Cd) using sequential extraction. Comparison of metal concentrations in roadside sediments with mean background values in sediments collected from first- or second-order streams in Korea shows that Zn, Cu and Pb are most affected by anthropogenic inputs. The 206Pb/207Pb ratios of roadside sediments (range = 1.1419–1.1681; mean 1.1576 ± 0.0068) suggest that Pb is mainly derived from industrial sources rather than from leaded gasoline. A five-step sequential extraction of roadside sediments showed that Zn, Cd and to a lesser degree Ni occur predominantly in the carbonate bound fraction, while Pb is highest in the reducible fraction, Cu in the organic fraction, and Cr in the residual fraction. It was found that the concentrations in the readily available exchangeable fraction were generally low for most metals examined, except for Ni whose exchangeable fraction was appreciable (average 15.2%). Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Zn > Ni > Cd > Pb > Cu > Cr. As potential changes of redox state and pH may remobilize the metals bound to carbonates, reducible, and/or organic matter, and may release and flush them through drain networks into streams, careful monitoring of environmental conditions appears to be very important. With respect to ecotoxicity, it is apparent the Zn and Cu pollution is of particular concern in Seoul city.
Keywords :
Urban roadside sediments , contamination , Partitioning , LEAD ISOTOPES , Metals
Journal title :
Chemosphere
Serial Year :
2000
Journal title :
Chemosphere
Record number :
738109
Link To Document :
بازگشت