Title of article :
Geochemical controls on ground water composition at the Cripple Creek Mining District, Cripple Creek, Colorado
Author/Authors :
L. Edmond Eary، نويسنده , , Donald D. Runnells، نويسنده , , K. J. Esposito، نويسنده ,
Abstract :
A combined approach involving evaluations of historical information, compositional trends, site mineralogy, and forward and inverse geochemical modeling was used to assess the effects of Au mining on ground water quality at the Cripple Creek Mining District. The District is located in a Tertiary volcanic diatreme complex surrounded by Precambrian granite. Historically, mining activity was underground whereas present-day mining occurs in surface mines. Between 1896 and 1941, a series of tunnels was excavated to drain the underground mining areas. The Carlton Tunnel, located about 900–950 m below the surface, is the primary ground water drain for the mining areas. Ground water flowing from the Carlton Tunnel has historically been of good quality. The geochemical processes controlling the quality of the Carlton Tunnel water were the focus of this study. Mineralogical and acid/base accounting data indicate that the diatreme is zoned vertically from an oxidized condition with acidic paste-pH, acidic ground water, and elevated metal concentrations near the surface to an alkaline condition with high pH, elevated SO4, and low metal concentrations at depth. The average travel time of water from the surface to the Carlton Tunnel is estimated to be at least 25a based on 3H determinations. Forward geochemical modeling results indicate that this travel time is sufficient for ground water to reach equilibrium with calcite, gypsum, and fluorite by the time it exits through the Carlton Tunnel. Equilibrium processes have effectively fixed the pH, alkalinity, and SO4 in the Carlton Tunnel water to near-constant levels for at least 24–70a based on comparisons to historically reported water compositions. Inverse geochemical modeling results indicate that there is sufficient neutralization capacity at depth in the diatreme to maintain the current good quality of the ground water flowing from the Carlton Tunnel for the forseeable future, assuming no significant changes in hydrogeochemical conditions.