Author/Authors :
James L. Jerden Jr.، نويسنده , , A. K. Sinha، نويسنده ,
Abstract :
The unmined Coles Hill U deposit of south central Virginia represents a natural setting where U is stabilized by phosphate mineral precipitation in an oxidizing bedrock aquifer. Drill cores from the shallow portion of the deposit preserve a sharp Fe redox front defined by Fe(III) oxide staining. This front is located near a discontinuity in U mineralogy with U(IV) assemblages (e.g. coffinite, uraninite) on the reducing side, and U(VI) assemblages on the oxidizing side. The discontinuity in U mineralogy does not, however, represent a major discontinuity in whole rock U concentrations, with sample groups from both oxidized and reduced sides of the front generally ranging from 500 to 1000 ppm. This observation suggests that the volume of shallow bedrock associated with the deposit has not lost significant amounts of U during the oxidation and incipient chemical weathering. The precipitation of Ba uranyl phosphate (Ba meta-autunite) is responsible for U retention within this zone. Ground waters sampled from the weathered bedrock aquifer associated with the deposit contain less than 15 μg l−1 dissolved U. This suggests that the low solubility of the Ba meta-autunite limits U concentrations to values lower than the US-EPA maximum contaminant level of 30 μg l−1. Ground water speciation and mineral saturation calculations show that, in addition to Eh and pH, the most important factor controlling this U fixation process is the activity ratio of dissolved phosphate to dissolved carbonate. Experimental results suggest that, at the Coles Hill site, the oxidation of U(IV) to U(VI) and subsequent precipitation of uranyl phosphate occurs rapidly (time scale of weeks) relative to ground water transport (e.g. 20 m/a). Furthermore, based on the rate of downward migration of the redox front, it is estimated that the oldest U(VI) phosphate assemblages associated with the Coles Hill U deposit have been stable for up to 150 ka. These observations have important implications for the design and long term performance assessment of phosphate-based stabilization and reactive barrier techniques.