Title of article :
Micro-flood (MF) technology for sustainable manufacturing operations that are coolant less and occupationally friendly
Author/Authors :
P.W. Marksberry، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
14
From page :
958
To page :
971
Abstract :
This paper presents a new technology for minimizing the use of metalworking fluids (MWFs) during the machining process that is atomization-less and occupational friendly. Micro-flood (MF) technology utilizes direct contact between the cutting tool and the MWF without the interaction of a gas medium. Experiments were conducted in high volume mass production environment turning HSLA (high strength low alloy) SAE 070Y steel. Machining performance and total air mass particulates were investigated in dry machining, Near dry machining (NDM) via atomized spray mist and MF technology. Open-atmosphere air monitoring indicated that total mass particulates behaved in an almost linear fashion with respect to gas atomization pressure, whereas the MWF flow rate demonstrated logarithmic trends in NDM applications using an atomized spray. Nozzle orientations directed upward into the air also produced higher mg/m3 concentrations (such as flank) than chip and rake face orientations that were directed down. Greater separation existed at higher gas atomization pressures, MWF flow rates and by changing the MWF type. At extreme limits, nozzle orientation affected mg/m3 concentration as much as 4–5 mg/m3 for water-miscible MWFs and 15–22 mg/m3 for non-water-miscible MWFs. Tool-life performance varied greatly among MWF type and flow rate, and in all cases MF technology performed better than NDM using an atomized spray mist. Direct and consistent MWF penetration to cutting zone using MF technology lowered tool-wear on the average of 12–75% compared to NDM at the same MWF flow rate. Compared to dry machining, NDM improved tool-wear on the average by 20–243%. In one case, tool-wear performance was improved by 616% at 0.15 mm using MF technology compared to dry machining at a nominal 0.925 mm tool-wear. Overall, a large mass reduction of particulates can be achieved employing MF technology that would have been unrealistic for an open-atmosphere machining environment employing an atomized spray mist. On the average, MF technology can maintain a total air mass particulate of less than 0.4 mg/m3 in the occupational work zone using MWF flow rates up to 1260 ml/h, regardless of the MWF classification. Atomized spray mist applications are capable meeting the 5 mg/m3 OSHA limit if MWF flow rates are less than 160 ml/h, air pressures are less than 0.137 MPa (20 psi) using water-miscible MWFs and air pressures are less than 0.0344 MPa (5 psi) using non-water-miscible MWFs.
Keywords :
Automotive , Non-atomization , Tool-wear , Metalworking fluid , Total air massparticulates , Sustainable manufacturing , NDM , Near dry machining , Nozzle
Journal title :
Journal of Cleaner Production
Serial Year :
2007
Journal title :
Journal of Cleaner Production
Record number :
744242
Link To Document :
بازگشت