Title of article :
Delta-Shock Waves as Limits of Vanishing Viscosity for Hyperbolic Systems of Conservation Laws
Author/Authors :
Tan D. C.، نويسنده , , Zhang T.، نويسنده , , Chang T.، نويسنده , , ZhengY. X، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Abstract :
For simple models of hyperbolic systems of conservation laws, we study a new type of nonlinear hyperbolic wave, a delta-shock wave, which is a Dirac delta function supported on a shock. We prove that delta-shock waves are w*-limits in L1 of solutions to some reasonable viscous perturbations as the viscosity vanishes. Further, we solve the multiplication problem of a delta function with a discontinuous function to show that delta-shock waves satisfy the equations in the sense of distributions. Under suitable generalized Rankine-Hugoniot and entropy conditions, we establish the existence and uniqueness of solutions involving delta-shock waves for the Riemann problems. The existence of solutions to the Cauchy problem is also investigated.
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS