Title of article :
Weighted Decay Estimates for the Wave Equation
Author/Authors :
Piero DʹAncona، نويسنده , , Vladimir Georgiev، نويسنده , , Hideo Kubo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
63
From page :
146
To page :
208
Abstract :
In this work we study weighted Sobolev spaces in Rn generated by the Lie algebra of vector fields (1+x2)1/2 ∂xj,j=1, …, n. Interpolation properties and Sobolev embeddings are obtained on the basis of a suitable localization in Rn. As an application we derive weighted Lq estimates for the solution of the homogeneous wave equation. For the inhomogeneous wave equation we generalize the weighted Strichartz estimate established by V. Georgiev (1997, Amer. J. Math.119, 1291–1319) and establish global existence results for the supercritical semilinear wave equation with non-compact small initial data in these weighted Sobolev spaces.
Keywords :
semilinear equation , Global solution , Supercritical. , weightedSobolev spaces , decay estimates , wave equation
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2001
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
750149
Link To Document :
بازگشت