Title of article :
Continuous Dependence Estimates for Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Equations
Author/Authors :
Espen R. Jakobsen، نويسنده , , Kenneth H. Karlsen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
29
From page :
497
To page :
525
Abstract :
Using the maximum principle for semicontinuous functions (Differential Integral Equations3 (1990), 1001–1014; Bull. Amer. Math. Soc. (N.S)27 (1992), 1–67), we establish a general “continuous dependence on the non- linearities” estimate for viscosity solutions of fully nonlinear degenerate parabolic equations with time- and space-dependent nonlinearities. Our result generalizes a result by Souganidis (J. Differential Equations56 (1985), 345–390) for first- order Hamilton–Jacobi equations and a recent result by Cockburn et al. (J. Differential Equations170 (2001), 180–187) for a class of degenerate parabolic second–order equations. We apply this result to a rather general class of equations and obtain: (i) Explicit continuous dependence estimates. (ii) L∞ and Hölder regularity estimates. (iii) A rate of convergence for the vanishing viscosity method. Finally, we illustrate results (i)–(iii) on the Hamilton–Jacobi– Bellman partial differential equation associated with optimal control of a degenerate diffusion process over a finite horizon. For this equation such results are usually derived via probabilistic arguments, which we avoid entirely here.
Keywords :
H.older estimate. , nonlinear degenerate parabolic equation , Hamilton–Jacobi–Bellmanequation , Viscosity solution , convergence rate , vanishing viscositymethod , continuous dependence estimate
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2002
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
750275
Link To Document :
بازگشت