Title of article :
Multiplicity of positive periodic solutions to superlinear repulsive singular equations
Author/Authors :
Daqing Jiang، نويسنده , , Jifeng Chu، نويسنده , , Meirong Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
21
From page :
282
To page :
302
Abstract :
In this paper, we study positive periodic solutions to the repulsive singular perturbations of the Hill equations. It is proved that such a perturbation problem has at least two positive periodic solutions when the anti-maximum principle holds for the Hill operator and the perturbation is superlinear at infinity. The proof relies on a nonlinear alternative of Leray–Schauder type and on Krasnoselskii fixed point theorem on compression and expansion of cones.
Keywords :
Repulsive singular equation , Superlinear , Periodic solution , multiplicity
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2005
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
750618
Link To Document :
بازگشت