Abstract :
We study the problem of decay rate for the solutions of the initial–boundary value problem to the wave equation, governed by localized nonlinear dissipation and without any assumption on the dynamics (i.e., the control geometric condition is not satisfied). We treat separately the autonomous and the non-autonomous cases. Providing regular initial data, without any assumption on an observation subdomain, we prove that the energy decays at last, as fast as the logarithm of time. Our result is a generalization of Lebeau (in: A. Boutet de Monvel, V. Marchenko (Eds.), Algebraic and Geometric Methods in Mathematical Physics, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1996, pp. 73) result in the autonomous case and Nakao (Adv. Math. Sci. Appl. 7 (1) (1997) 317) work in the non-autonomous case. In order to prove that result we use a new method based on the Fourier–Bross–Iaglintzer (FBI) transform.
Keywords :
FBI transform , Initial–boundaryv alue problem , Decayrate , Wave equation