Title of article :
Invariant manifolds of dynamical systems close to a rotation: Transverse to the rotation axis
Author/Authors :
Patrick Bonckaert، نويسنده , , Ernest Fontich، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
28
From page :
128
To page :
155
Abstract :
We consider one parameter families of vector fields depending on a parameter such that for =0 the system becomes a rotation of R2×Rn around {0}×Rn and such that for >0 the origin is a hyperbolic singular point of saddle type with, say, attraction in the rotation plane and expansion in the complementary space. We look for a local subcenter invariant manifold extending the stable manifolds to =0. Afterwards the analogous case for maps is considered. In contrast with the previous case the arithmetic properties of the angle of rotation play an important role.
Keywords :
Subcenter invariant manifolds , Bifurcations , Perturbations of rotations
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2005
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
750657
Link To Document :
بازگشت