Title of article :
A global Lipschitz continuity result for a domain-dependent Neumann eigenvalue problem for the Laplace operator
Author/Authors :
Pier Domenico Lamberti، نويسنده , , Massimo Lanza de Cristoforis، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
25
From page :
109
To page :
133
Abstract :
Let Ω be an open connected subset of of finite measure for which the Poincaré–Wirtinger inequality holds. We consider the Neumann eigenvalue problem for the Laplace operator in the open subset φ(Ω) of , where φ is a locally Lipschitz continuous homeomorphism of Ω onto φ(Ω). Then, we show Lipschitz-type inequalities for the reciprocals of the eigenvalues delivered by the Rayleigh quotient. Then, we further assume that the imbedding of the Sobolev space W1,2(Ω) into the space L2(Ω) is compact, and we prove the same type of inequalities for the projections onto the eigenspaces upon variation of φ.
Keywords :
Neumann eigenvalues and eigenvectors , Laplace operator , Domain perturbation , Specialnonlinear operators
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2005
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
750684
Link To Document :
بازگشت