In this paper, we consider the initial-boundary value problem of a semilinear parabolic equation with local and non-local (localized) reactions in a ball: ut=Δu+up+uq(x*,t) in B(R) where and x*≠0. If max(p,q)>1, there exist blow-up solutions of this problem for large initial data. We treat the radially symmetric and one peak non-negative solution of this problem. We give the complete classification of total blow-up phenomena and single point blow-up phenomena according to p and q.
(i) If or p=q>2, then single point blow-up occurs whenever solutions blow up.
(ii) If 1
Keywords :
Single point blow-up , Total blow-up , Localized reaction , Non-local problem