Title of article :
Local and global well-posedness for the Ostrovsky equation
Author/Authors :
Felipe Linares، نويسنده , , Aniura Milanés، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
16
From page :
325
To page :
340
Abstract :
We consider the initial value problem for where u is a real valued function, β and γ are real numbers such that β•γ≠0 and . This equation differs from Korteweg–de Vries equation in a nonlocal term. Nevertheless, we obtained local well-posedness in , , using techniques developed in [C.E. Kenig, G. Ponce, L. Vega, Well-posedness of the initial value problem for the Korteweg–de Vries equation, J. Amer. Math. Soc. 4 (1991) 323–347]. For the case β•γ>0, we also obtain a global result in X1, using appropriate conservation laws.
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2006
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
750803
Link To Document :
بازگشت