Title of article :
Existence and multiplicity of solutions for Neumann problems
Author/Authors :
Dumitru Motreanu، نويسنده , , Nikolaos S. Papageorgiou، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
35
From page :
1
To page :
35
Abstract :
In this paper we examine semilinear and nonlinear Neumann problems with a nonsmooth locally Lipschitz potential function. Using variational methods based on the nonsmooth critical point theory, for the semilinear problem we prove a multiplicity result under conditions of double resonance at higher eigenvalues. Our proof involves a nonsmooth extension of the reduction method due to Castro–Lazer–Thews. The nonlinear problem is driven by the p-Laplacian. So first we make some observations about the beginning of the spectrum of (−Δp,W1,p(Z)). Then we prove an existence and multiplicity result. The existence result permits complete double resonance. The multiplicity result specialized in the semilinear case (i.e. p=2) corresponds to the super-sub quadratic situation.
Keywords :
neumann problem , Double resonance , p-Laplacian , eigenvalues and eigenvectors , Nonsmooth critical pointtheory , Generalized subdifferential , Linking sets , Local linking reduction method
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2006
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
751048
Link To Document :
بازگشت