Title of article :
A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners
Author/Authors :
Serguei A. Nazarov، نويسنده , , Guido Sweers and Enrique Zuazua، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
Fourth order hinged plate type problems are usually solved via a system of two second order equations. For smooth domains such an approach can be justified. However, when the domain has a concave corner the bi-Laplace problem with Navier boundary conditions may have two different types of solutions, namely u1 with and . We will compare these two solutions. A striking difference is that in general only the first solution, obtained by decoupling into a system, preserves positivity, that is, a positive source implies that the solution is positive. The other type of solution is more relevant in the context of the hinged plate. We will also address the higher-dimensional case. Our main analytical tools will be the weighted Sobolev spaces that originate from Kondratiev. In two dimensions we will show an alternative that uses conformal transformation. Next to rigorous proofs the results are illustrated by some numerical experiments for planar domains.
Keywords :
Higher order elliptic p.d.e. , Hinged plate , Non-smooth boundary , positivity
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS