Title of article :
Quasi-periodic solutions in a nonlinear Schrödinger equation
Author/Authors :
Jiansheng Geng، نويسنده , , Yingfei Yi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
31
From page :
512
To page :
542
Abstract :
In this paper, one-dimensional (1D) nonlinear Schrödinger equationiut−uxx+mu+u4u=0 with the periodic boundary condition is considered. It is proved that for each given constant potential m and each prescribed integer N>1, the equation admits a Whitney smooth family of small amplitude, time quasi-periodic solutions with N Diophantine frequencies. The proof is based on a partial Birkhoff normal form reduction and an improved KAM method.
Keywords :
Normal form , kam theory , Quasi-periodic solution , Hamiltonian systems , Schr?dinger equation
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2006
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
751092
Link To Document :
بازگشت