Title of article :
Globally Lipschitz continuous solutions to a class of quasilinear wave equations
Author/Authors :
Yuan Chang، نويسنده , , John M. Hong، نويسنده , , Cheng-Hsiung Hsu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
28
From page :
504
To page :
531
Abstract :
This work investigates the existence of globally Lipschitz continuous solutions to a class of Cauchy problem of quasilinear wave equations. Applying Laxʹs method and generalized Glimmʹs method, we construct the approximate solutions of the corresponding perturbed Riemann problem and establish the global existence for the derivatives of solutions. Then, the existence of global Lipschitz continuous solutions can be carried out by showing the weak convergence of residuals for the source term of equation.
Keywords :
Quasilinear wave equations , Perturbed Riemann problem , Cauchyproblem , Lax’s method , Generalized Glimm’s method , Hyperbolic systems of balance laws
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2007
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
751169
Link To Document :
بازگشت