Title of article :
Lp-maximal regularity for non-autonomous evolution equations
Author/Authors :
Wolfgang Arendt، نويسنده , , Ralph Chill، نويسنده , , Simona Fornaro، نويسنده , , César Poupaud، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
26
From page :
1
To page :
26
Abstract :
Let be strongly measurable and bounded, where D, X are Banach spaces such that D X. We assume that the operator A(t) has maximal regularity for all t [0,τ]. Then we show under some additional hypothesis (viz. relative continuity) that the non-autonomous problem is well-posed in Lp; i.e. for all f Lp(0,τ;X) and all there exists a unique u W1,p(0,τ;X)∩Lp(0,τ;D) solution of (P), where 1
Keywords :
First order Cauchy problem , Second order Cauchy problem , Nonlinear diffusion equation , Nonlinear wave equation , Lp-maximal regularity , Non-autonomous
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2007
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
751173
بازگشت