Title of article :
Normality of the maximum principle for nonconvex constrained Bolza problems
Author/Authors :
Piernicola Bettiol، نويسنده , , Hélène Frankowska، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
We consider a Bolza optimal control problem with state constraints. It is well known that under some technical assumptions every strong local minimizer of this problem satisfies first order necessary optimality conditions in the form of a constrained maximum principle. In general, the maximum principle may be abnormal or even degenerate and so does not provide a sufficient information about optimal controls. In the recent literature some sufficient conditions were proposed to guarantee that at least one maximum principle is nondegenerate, cf. [A.V. Arutyanov, S.M. Aseev, Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints, SIAM J. Control Optim. 35 (1997) 930–952; F. Rampazzo, R.B. Vinter, A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control, IMA 16 (4) (1999) 335–351; F. Rampazzo, R.B. Vinter, Degenerate optimal control problems with state constraints, SIAM J. Control Optim. 39 (4) (2000) 989–1007]. Our aim is to show that actually conditions of a similar nature guarantee normality of every nondegenerate maximum principle. In particular we allow the initial condition to be fixed and the state constraints to be nonsmooth. To prove normality we use J. Yorke type linearization of control systems and show the existence of a solution to a linearized control system satisfying new state constraints defined, in turn, by linearization of the original set of constraints along an extremal trajectory.
Keywords :
Bolza problem , optimal control , Normal necessary conditions , Constrained maximum principle
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS