Title of article :
Global solutions for initial–boundary value problem of quasilinear wave equations
Author/Authors :
John M. Hong، نويسنده , , Cheng-Hsiung Hsu، نويسنده , , Ying-Chin Su، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
26
From page :
223
To page :
248
Abstract :
This work investigates the existence of globally Lipschitz continuous solutions to a class of initial–boundary value problem of quasilinear wave equations. Applying the Laxʹs method and generalized Glimmʹs method, we construct the approximate solutions of initial–boundary Riemann problem near the boundary layer and perturbed Riemann problem away from the boundary layer. By showing the weak convergence of residuals for the approximate solutions, we establish the global existence for the derivatives of solutions and obtain the existence of global Lipschitz continuous solutions of the problem.
Keywords :
Initial andboundary Riemann problem , Lax’s method , Generalized Glimm’s method , Hyperbolic systems of balance laws , Quasilinear wave equations , Perturbed Riemann problem
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2008
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
751426
Link To Document :
بازگشت