Title of article :
Transversality in scalar reaction–diffusion equations on a circle
Author/Authors :
Radoslaw Czaja، نويسنده , , Carlos Rocha، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
We prove that stable and unstable manifolds of hyperbolic periodic orbits for general scalar reaction–diffusion equations on a circle always intersect transversally. The argument also shows that for a periodic orbit there are no homoclinic connections. The main tool used in the proofs is Matanoʹs zero number theory dealing with the Sturm nodal properties of the solutions
Keywords :
Heteroclinic orbit , Transversality , global attractor , Zero number , Periodic orbit
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS