Title of article :
Existence and regularity of extremal solutions for a mean-curvature equation
Author/Authors :
Antoine Mellet، نويسنده , , Julien Vovelle، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
39
From page :
37
To page :
75
Abstract :
We study a class of mean curvature equations where denotes the mean curvature operator and for p 1. We show that there exists an extremal parameter λ* such that this equation admits a minimal weak solutions for all λ [0,λ*], while no weak solutions exists for λ>λ* (weak solutions will be defined as critical points of a suitable functional). In the radially symmetric case, we then show that minimal weak solutions are classical solutions for all λ [0,λ*] and that another branch of classical solutions exists in a neighborhood (λ*−η,λ*) of λ*.
Keywords :
Mean curvatureMinimal solutionSemi-stable solutionExtremal solutionRegularity
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2010
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
751763
Link To Document :
بازگشت