Title of article :
Special conformal groups of a Riemannian manifold and Lie point symmetries of the nonlinear Poisson equation
Author/Authors :
Yuri Bozhkov، نويسنده , , Igor Leite Freire، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
42
From page :
872
To page :
913
Abstract :
We obtain a complete group classification of the Lie point symmetries of nonlinear Poisson equations on generic (pseudo) Riemannian manifolds M. Using this result we study their Noether symmetries and establish the respective conservation laws. It is shown that the projection of the Lie point symmetries on M are special subgroups of the conformal group of M. In particular, if the scalar curvature of M vanishes, the projection on M of the Lie point symmetry group of the Poisson equation with critical nonlinearity is the conformal group of the manifold. We illustrate our results by applying them to the Thurston geometries.
Keywords :
Lie point symmetryNoether symmetryConservation lawsConformal group
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2010
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
751795
Link To Document :
بازگشت