Title of article :
Gas-to-particle conversion in the atmosphere: I. Evidence from empirical atmospheric aerosols
Author/Authors :
Charles F. Clement، نويسنده , , Ian J. Ford، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
13
From page :
475
To page :
487
Abstract :
Condensable vapours such as sulphuric acid form aerosol in the atmosphere by the competing mechanisms of condensation on existing aerosol and the nucleation of new aerosol. Observational and theoretical evidence for the relative magnitudes of the competing processes is reviewed, and a number of general conclusions are made. Condensation is sensitive to the sticking probability of sulphuric acid molecules on aerosol particles, but there is now good evidence that it should be close to unity. In this case, equilibration timescales between acid vapour and the aerosol in most of the atmosphere are of the order of minutes or less, so that the acid concentration on such timescales given simply by the production rate times the equilibration time. When the acid concentration exceeds a threshold, nucleation will occur. The atmospheric aerosol therefore follows a history of initial formation in a nucleation burst followed by growth and coagulation with final removal by precipitation. This leads to the inverse correlation between aerosol number concentration and mass concentration found by Clarke (1992. Journal of Atmospheric Chemistry 14, 479–488) in the free troposphere. Binary homogeneous nucleation of sulphuric acid/water droplets, for which various simplified rates are compared, may dominate in such regions, but other mechanisms are possible elsewhere. A detailed analysis is performed of the number concentrations, removal rates, and masses of the components of the different types of global aerosols proposed empirically by Jaenicke (1993. Tropospheric Aerosols, Aerosol-Cloud-Climate Interaction. Academic Press, New York). There is a striking correlation between number concentrations in the nucleation and accumulation modes; and the giant aerosol mode, which if it is present dominates the mass, has little effect on the gas-to-particle conversion process. The mass of the atmospheric aerosol is therefore uncorrelated with the magnitude of molecular aerosol removal by condensation.
Keywords :
condensation , AEROSOL , Nucleation
Journal title :
Atmospheric Environment
Serial Year :
1998
Journal title :
Atmospheric Environment
Record number :
755402
Link To Document :
بازگشت