Title of article :
Assessing the representativeness of monitoring data from an urban intersection site in central London, UK
Author/Authors :
A. Scaperdas، نويسنده , , R. N. Colvile، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Abstract :
The wind flow field around urban street-building configurations has an important influence on the microscale pollutant dispersion from road traffic, affecting overall dilution and creating localised spatial variations of pollutant concentration. As a result, the “representativeness” of air quality measurements made at different urban monitoring sites can be strongly dependent on the interaction of the local wind flow field with the street-building geometry surrounding the monitor. The present study is an initial attempt to develop a method for appraising the significance of air quality measurements from urban monitoring sites, using a general application computational fluid dynamics (CFD) code to simulate small-scale flow and dispersion patterns around real urban building configurations. The main focus of the work was to evaluate routine CO monitoring data collected by Westminster City Council at an intersection of street canyons at Marylebone Road, Central London. Many monitors in the UK are purposely situated at urban canyon intersections, which are thought to be local “hot spots” of pollutant emissions, however very limited information exists in the literature on the flow and dispersion patterns associated with them. With the use of simple CFD simulations and the analysis of available monitoring data, it was possible to gain insights into the effect of wind direction on the small-scale dispersion patterns at the chosen intersection, and how that can influence the data captured by a monitor. It was found that a change in wind direction could result in an increase or decrease of monitored CO concentration of up to 80%, for a given level of traffic emissions and meteorological conditions. Understanding and de-coupling the local effect of wind direction from monitoring data using the methods presented in this work could prove a useful new tool for urban monitoring data interpretation.
Keywords :
Air quality monitoring , Dispersion modelling , Urban canyons , intersections , Air quality assessment
Journal title :
Atmospheric Environment
Journal title :
Atmospheric Environment