Title of article :
Emission factors for passenger cars: application of instantaneous emission modeling
Author/Authors :
Peter de Haan، نويسنده , , Mario Keller، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
This paper discusses the use of ‘instantaneous’ high-resolution (1 Hz) emission data for the estimation of passenger car emissions during real-world driving. Extensive measurements of 20 EURO-I gasoline passenger cars have been used to predict emission factors for standard (i.e. legislative) as well as non-standard (i.e. real-world) driving patterns. It is shown that emission level predictions based upon chassis dynamometer tests over standard driving cycles significantly underestimate emission levels during real-world driving. The emission characteristics of modern passenger cars equipped with a three-way catalytic converter are a low, basic emission level on the one hand, and frequent emission ‘peaks’ on the other. For real-world driving, up to one-half of the entire emission can be emitted during these short-lasting peaks. Their frequency depends on various factors, including the level of ‘dynamics’ (speed variation) of the driving pattern. Because of this, the use of average speed as the only parameter to characterize emissions over a specific driving pattern is not sufficient. The instantaneous emissions approach uses an additional parameter representing engine load in order to resolve the differences between driving patterns with comparable average speeds but different levels of ‘dynamics’. The paper includes an investigation of different statistical indicators and discusses methods to further improve the prediction capability of the instantaneous emission approach. The fundamental differences in emission-reduction strategies between different car manufacturers make the task of constructing a model valid for all catalyst passenger cars seemingly impossible, if the model is required to predict both fleet-averaged emission levels and emission factors for driving patterns of short duration for individual vehicles simultaneously.
Keywords :
Standard driving cycles , Modalmodeling , Emission factors , Catalyst cars , Real-world driving behavior , Instantaneous emissions
Journal title :
Atmospheric Environment
Journal title :
Atmospheric Environment