Title of article :
On-line measurements of α-pinene ozonolysis products using an atmospheric pressure chemical ionisation ion-trap mass spectrometer
Author/Authors :
Bettina Warscheid، نويسنده , , Thorsten Hoffmann، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
An on-line technique to investigate complex organic oxidation reactions in environmental chamber experiments is presented. The method is based on the direct introduction of the chamber air into an atmospheric pressure ion source of a commercial ion-trap mass spectrometer. To demonstrate the analytical potential of the method (atmospheric pressure chemical ionisation/mass spectrometry, APCI/MS), the ozonolysis of α-pinene was investigated in a series of experiments performed in various sized reaction chambers at atmospheric pressure and 296 K in synthetic air. Investigations were focussed on the influence of the water vapour concentration on the formation of the predominant oxidation product, pinonaldehyde, derived from the α-pinene/ozone reaction. Quantification of pinonaldehyde was achieved by conducting a standard addition technique. The molar yield of pinonaldehyde was found to depend strongly on the actual water vapour concentration between <1 and 80% relative humidity. Starting with an average yield of 0.23±0.05 at dry conditions, pinonaldehyde formation was approximately doubled by reaching a yield of 0.53±0.05 at a relative humidity of around 60%. Furthermore, the formation mechanism of pinonaldehyde was investigated in greater detail using isotopically labelled water. Applying on-line APCI/MS, pinonaldehyde formation under incorporation of 18O was observed, strongly supporting the reaction of the stabilised Criegee radical with water in the gas phase as suggested by Alvarado et al. (Journal of Geophysical Research 103 (1998) 25541–25551). Furthermore, the mass spectra recorded on-line were used to perform a semi-quantitative estimation of the decomposition pathway of the primary ozonide, indicating a branching ratio of 0.35/0.65.
Keywords :
Biogenic hydrocarbon , ozone , Olefin reaction , Reaction mechanism , Mass spectrometry
Journal title :
Atmospheric Environment
Journal title :
Atmospheric Environment