Title of article :
Water adsorption and cloud condensation nuclei activity of calcite and calcite coated with model humic and fulvic acids
Author/Authors :
Courtney D. Hatch، نويسنده , , Kelly M. Gierlus، نويسنده , , Jennifer D. Schuttlefield، نويسنده , , Vicki H. Grassian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
13
From page :
5672
To page :
5684
Abstract :
Recent studies have shown that organics can alter the water adsorption and cloud condensation nuclei (CCN) activity of common deliquescent species in the Earthʹs atmosphere. However, very little is known about the effect of organics on water adsorption and CCN activity of insoluble nuclei, such as mineral dust aerosol. A large fraction of unidentified organic material in aerosol particles is composed of poly-acidic compounds resembling humic substances. The presence of these humic-like substances (HULIS) can alter the water adsorption and CCN activity of mineral dust aerosol. We have measured the CCN activity of model humic and fulvic acids and of mineral dust particles coated with these substances in the laboratory. We find that coatings of humic and fulvic acids on calcite particles significantly increases water adsorption compared to uncoated particles. CCN measurements indicate that humic- or fulvic acid-coated calcite particles are more CCN active than uncoated calcite particles. Additionally, thicker coatings of humic or fulvic acids appear to result in more efficient CCN activity. Thus, mineral dust particles coated with high molecular weight organic materials will take up more water and become more efficient CCN in the atmosphere than uncoated mineral dust particles, potentially altering the effect of mineral dust on the Earthʹs climate. In addition to the experimental results, we have explored a newly modified Köhler theory for predicting the CCN activity of insoluble, wettable particles based on multi layer water adsorption measurements of calcite.
Keywords :
Humic acidFulvic acidHULISMineral dustCCN and water adsorption
Journal title :
Atmospheric Environment
Serial Year :
2008
Journal title :
Atmospheric Environment
Record number :
761185
Link To Document :
بازگشت