Title of article :
Geometric norm equality related to the harmonicity of the Poisson kernel for homogeneous Siegel domains
Author/Authors :
Takaaki Nomura، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
39
From page :
229
To page :
267
Abstract :
In this paper, we present a geometric norm equality involving an admissible linear form ω for the Shilov boundary of a homogeneous Siegel domain D. We prove that the validity of this norm equality is equivalent to the symmetry of D and the reduction of ω essentially to the Koszul form. This, in particular, reveals a geometric reason that the Poisson kernel is annihilated by the Laplace–Beltrami operator if and only if D is symmetric, a theorem due to Hua, Look, Korányi and Xu.
Keywords :
Siegel domain , Cayley transform , Poisson kernel , Normalj-algebra , Laplace–Beltrami operator
Journal title :
Journal of Functional Analysis
Serial Year :
2003
Journal title :
Journal of Functional Analysis
Record number :
761546
Link To Document :
بازگشت