Title of article :
Standard symmetric operators in Pontryagin spaces: a generalized von Neumann formula and minimality of boundary coefficients
Author/Authors :
Tomas Azizov، نويسنده , , Branko ?urgus، نويسنده , , Aad Dijksma، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
Certain meromorphic matrix valued functions on C⧹R, the so-called boundary coefficients, are characterized in terms of a standard symmetric operator S in a Pontryagin space with finite (not necessarily equal) defect numbers, a meromorphic mapping into the defect subspaces of S, and a boundary mapping for S. Under some simple assumptions the boundary coefficients also satisfy a minimality condition. It is shown that these assumptions hold if and only if for S a generalized von Neumann equality is valid.
Keywords :
Pontryagin and Krein spaces , Indefinite inner products , Symmetric and self-adjointoperators and relations , Extensions of symmetric relations , Defect subspaces , Defect indices , Boundary operators , Boundary coefficients , von Neumann’sequality , Reproducing kernel Pontryagin spaces
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis