Title of article :
On the continuous analog of Rakhmanovʹs Theorem for orthogonal polynomials
Author/Authors :
Sergey A. Denisov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
16
From page :
465
To page :
480
Abstract :
We obtain the continuous analogs of Rakhmanovʹs Theorem for polynomials orthogonal on the unit circle. Sturm–Liouville operators and Krein systems are considered. For a Sturm–Liouville operator with bounded potential q, we prove the following statement. If the essential spectrum and absolutely continuous component of the spectral measure fill the whole positive half-line, then q decays at infinity in the certain integral sense.
Keywords :
orthogonal polynomials , Rakhmanov’s Theorem , Sturm–Liouville operators , Krein systems
Journal title :
Journal of Functional Analysis
Serial Year :
2003
Journal title :
Journal of Functional Analysis
Record number :
761554
Link To Document :
بازگشت