Title of article :
Global existence of small solutions for quadratic quasilinear Klein–Gordon systems in two space dimensions
Author/Authors :
Jean-Marc Delort، نويسنده , , Daoyuan Fang، نويسنده , , Ruying Xue، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
36
From page :
288
To page :
323
Abstract :
Consider a quasi-linear system of two Klein–Gordon equations with masses m1, m2. We prove that when m1≠2m2 and m2≠2m1, such a system has global solutions for small, smooth, compactly supported Cauchy data. This extends a result proved by Sunagawa (J. Differential Equations 192 (2) (2003) 308) in the semi-linear case. Moreover, we show that global existence holds true also when m1=2m2 and a convenient null condition is satisfied by the nonlinearities.
Keywords :
Nonlinear Klein–Gordon equation , Klainerman vector fields , global existence
Journal title :
Journal of Functional Analysis
Serial Year :
2004
Journal title :
Journal of Functional Analysis
Record number :
761791
Link To Document :
بازگشت