Title of article :
Transmission problems and spectral theory for singular integral operators on Lipschitz domains
Author/Authors :
Luis Escauriaza، نويسنده , , Marius Mitrea، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
31
From page :
141
To page :
171
Abstract :
We prove the well-posedness of the transmission problem for the Laplacian across a Lipschitz interface, with optimal non-tangential maximal function estimates, for data in Lebesgue and Hardy spaces on the boundary. As a corollary, we show that the spectral radius of the (adjoint) harmonic double layer potential K∗ in Lp0(∂Ω) is less than 12, whenever Ω is a bounded convex domain and 1
Keywords :
Lipschitz domains , Layer potentials , Atomic estimates , Transmission problems , Spectralradius
Journal title :
Journal of Functional Analysis
Serial Year :
2004
Journal title :
Journal of Functional Analysis
Record number :
761873
بازگشت