Title of article :
Hardy Sobolev spaces on strongly Lipschitz domains of
Author/Authors :
Pascal Auscher ، نويسنده , , Emmanuel Russ، نويسنده , , Philippe Tchamitchian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
Let be a strongly Lipschitz domain of . The Hardy spaces and have been introduced by Miyachi (Studia Math. 95(3) (1990) 205), Jonsson et al. (Studia Math. 80(2) (1984) 141) and Chang et al. (J. Funct. Anal. 114 (1993) 286). We first investigate spaces of functions in whose gradients belong to or , which we call Hardy–Sobolev spaces, following Strichartz (Coll. Math. 60–61(1) (1990) 129).
Secondly, if is a uniformly elliptic second-order divergence operator on with measurable complex coefficients subject to the Dirichlet or the Neumann boundary condition, we compare the norms of and in suitable Hardy spaces on , depending on the boundary condition, under the assumption that the heat kernel of L satisfies suitable estimates.
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis