Title of article :
Predicting the mobility of Zn, Fe, Cu, Pb, Cd from roasted sulfide (pyrite) residues—A case study of wastes from the sulfuric acid industry in Sweden
Author/Authors :
Zhixun Lin، نويسنده , , Ulf Quvarfort، نويسنده ,
Abstract :
Leachates from roasted sulfide residues, which are the wastes from the production of sulfuric acid at Falun, Sweden, have low pH and high concentrations of Zn, Fe, and SO4. The minerals are mainly hematite and maghemite and, because the various sulfides in the feed behave differently during the roasting process, the residual sulfides minerals are pyrrhotite and sphalerite. Oxidation of the residual sulfides contributes acidity, Zn, Fe, Cu, Cd, and sulfate to the effluents from the waste deposits. The dissolution of sphalerite is most likely accelerated in acid solution rich in Fe (III). The formation of Pb-sulfate coatings on galena may provides an armoring effect which slows the oxidation of the galena. Residual sulfides are source phases controlling long-term contaminant release. Other source minerals for Zn, Fe, Pb, Cu, Cd and SO4 in the effluents are iron oxides which retained percentage quantities of SO4, roast-derived alteration rims of Zn oxides on sphalerite, alterated silicates formed during the roasting process, and secondary minerals (e.g. Zn, Fe, Cu sulfates, iron hydroxides) that were precipitated by in-site oxidation in the waste dumps. The Zn, Fe, and Cu sulfates most likely control short-term changes in the chemistry of the leachate, while Pb concentration in the leachates may be controlled predominantly by Pb-release from the altered silicates. The mineralogical and geochemical data provide fundamental information essential for the remedial management of this type of industial waste.