Abstract :
Up to now comprehensive examination and assessment of the elimination behaviour of many different pollutants in biological waste water treatment failed above all because of limited possibilities to pursue polar organic compounds of anthropogenic and biogenic origin. In this case the behaviour of waste water constituents during the treatment of waste water from the pharmaceutical industry was studied with the help of mass-spectrometric detection (MS). After completest possible extraction and concentration by liquid/liquid and solid phase extraction (SPE) from samples of influent and effluent of a pilot plant, substance-specific determination and identification was done after chromatographic separation and with the help of mixture analysis, respectively. Separation by gas chromatography coupled with MS was applied to pursue the organic compounds, which are volatile without decomposition, during the waste water treatment process. Flow injection analysis (FIA) bypassing the analytical column combined with soft-ionizing interfaces served for screening of the polar compounds. Then they were separated by liquid chromatographic methods to recognize changes in the qualitative and quantitative compound spectrum. Mixture analysis by FIA combined with tandem mass spectrometry (FIA/MS/MS) was used for identification of the pollutants without previous chromatographic separation. A laboratory-made daughter ion library helped to identify some of the poorly eliminable pollutants detected. The presentation of the monitoring procedures applied was made in such a way that the treatment results were visually recognizable. Due to the use of time-saving FIA/MS, this method may serve for substance-specific monitoring of the treatment of possibly problematic waste waters. ©