Title of article :
Modeling of mercury sorption by activated carbon in a confined, a semi-fluidized, and a fluidized bed
Author/Authors :
T. C. Ho، نويسنده , , N. Kobayashi، نويسنده , , Y. K. Lee، نويسنده , , C. J. Lin، نويسنده , , J. R. Hopper، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
A process model was developed to simulate elemental mercury sorption by activated carbon in three distinct beds, namely a confined, a semi-fluidized, and a fluidized bed. The model involved the coupling of a kinetic model based on the mechanisms of surface equilibrium and external mass transfer, and a material balance model based on the tank-in-series approach. For surface equilibrium, three different equilibrium laws were used in the model, namely the Henryʹs Law, the Langmuir isotherm and the Freundlich isotherm. Literature mercury sorption data were used to determine the best-fit values of parameters for these equilibrium expressions. The parameter-fitted model was then used to simulate mercury sorption processes in the three distinct beds. The simulation parameters were mercury concentration, gas flow rate, adsorption temperature and the degree of semi-fluidization.
The simulation results have indicated that the model is capable of describing the literature available mercury sorption data. All the three surface equilibrium laws appear to simulate the adsorption profiles equally well mainly because the sorption process occurs in an extremely low concentration range. The simulation results for the three distinct beds have suggested that the confined bed has the best mercury control performance; however, it generates the highest pressure-drop across the bed. A fluidized bed creates the least pressure drop; however, its sorption performance is poor. A semi-fluidized bed offers acceptable performance with affordable pressure-drops and can be a practical candidate for the process.
Journal title :
Waste Management
Journal title :
Waste Management