Author/Authors :
Andrew Turner، نويسنده , , Silvia S. Pedroso، نويسنده , , Murray T. Brown، نويسنده ,
Abstract :
Uptake of the trace metals, Pd, Cd, Hg and Pb, by the marine macroalga, Ulva lactuca, has been studied along a salinity gradient (S = 15–35; pH ~ 8.3) created by batch mixing of synthetic sea water and pure water, both in the absence and presence of humic substances. Factors defining the concentration ratio of metal taken up (w/w) to metal remaining in solution ranged from about 102 mL g− 1 for Cd to 103 mL g− 1 for Pd and Hg. Within experimental error, only the biouptake of Cd appeared to exhibit a dependence on salinity, while the addition of 3 mg L− 1 of humics resulted in a small suppression of Pd and Hg uptake and a moderate enhancement of Pb uptake compared with the humic-free system. Metal internalisation, evaluated from an EDTA wash of the alga, followed the sequence: Hg > Pd > Cd > Pb; and was notably inhibited in the presence of humics for Pb. Metal uptake (as adsorption and internalisation) was modelled using the Windermere Humic Aqueous Model (WHAM, v6) by encoding the macroalga as a polyelectrolytic binding phase whose properties were defaulted to those of aqueous humics in the software database. By setting the “activity” of the binding phase to about 0.1 and systematically reducing the default constants for metal binding, the magnitude of metal uptake by U. lactuca was reproduced. However, for all metals the model predicted a reduction in algal uptake as a function of salinity that was not always observed experimentally. Moreover, calculations performed in the presence of aqueous humic substances and using the earlier fitted constants significantly underestimated metal uptake by U. lactuca. Discrepancies between experimental observations and model calculations, which are attributed to the formation of ternary complexes at the algal surface, suggest that conventional equilibrium speciation considerations alone are not applicable for modelling metal interactions with marine macroalgae.