Author/Authors :
Junhua Yan، نويسنده , , Charlotta Naeslund، نويسنده , , Ashraf S. Al-Madhoun، نويسنده , , Jianghai Wang، نويسنده , , Weihua Ji، نويسنده , , Guirec Y. Cosquer، نويسنده , , Jayaseharan Johnsamuel، نويسنده , , Stefan Sj?berg، نويسنده , , Staffan Eriksson، نويسنده , , Werner Tjarks، نويسنده ,
Abstract :
Boron neutron capture therapy (BNCT) is a chemoradio-therapeutic method for the treatment of cancer. It depends on the selective targeting of tumor cells by boron-containing compounds. One category of BNCT agents with potential to selectively target tumor cells may be thymidine derivatives substituted at the 3′-position with appropriate boron moieties. Thus, several thymidine analogues were synthesized with a carborane cluster bound to the 3′-position either through an ether or a carbon linkage. The latter are the first reported carborane-containing nucleosides in which the carboranyl entity is directly linked to the carbohydrate portion of the nucleoside by a carbon–carbon bond. Low but significant phosphorylation rates in the range of 0.18% that of thymidine were observed for the carbon-linked 3′-carboranyl thymidine analogues in phosphoryl transfer assays using recombinant preparations of thymidine kinases 1 (TK1) and thymidine kinases 2 (TK2). Some of the ether-linked 3′-carboranyl thymidine analogues appeared to be slightly unstable under acidic as well as phosphoryl transfer assay conditions and were, if at all, poor substrates for TK1.