Title of article :
A neural network based prediction of octanol–water partition coefficients using atomic5 fragmental descriptors
Author/Authors :
L?szl? Moln?r، نويسنده , , Gy?rgy M. Keseru?، نويسنده , , ?kos Papp، نويسنده , , Zsolt Guly?s، نويسنده , , Ferenc Darvas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
3
From page :
851
To page :
853
Abstract :
An artificial neural network based approach using Atomic5 fragmental descriptors has been developed to predict the octanol–water partition coefficient (logP). We used a pre-selected set of organic molecules from PHYSPROP database as training and test sets for a feedforward neural network. Results demonstrate the superiority of our non-linear model over the traditional linear method.
Keywords :
Preduction , neural network. , Octanol–water partition , LogP
Journal title :
Bioorganic & Medicinal Chemistry Letters
Serial Year :
2004
Journal title :
Bioorganic & Medicinal Chemistry Letters
Record number :
794088
Link To Document :
بازگشت