Title of article :
Enzyme inhibition potency enhancement by active site metal chelating and hydrogen bonding induced conformation-restricted cyclopropanecarbonyl derivatives
Author/Authors :
Pei-Yu Kuo، نويسنده , , Tien-Lan Shie، نويسنده , , You-Sheng Chen، نويسنده , , Jiun-Ting Lai، نويسنده , , Ding-Yah Yang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
Two cyclopropanecarbonyl derivatives were independently found to be 15 and 14 times more potent than the corresponding isopropylcarbonyl analogues as inhibitors of 4-hydroxyphenylpyruvate dioxygenase and dihydroorotate dehydrogenase, respectively. A thorough examination of the co-crystal structures of available enzyme inhibitor complexes and the conformation of X-ray crystal structures of several synthesized cyclopropanecarbonyl derivatives revealed that this enhancement by one order of magnitude of inhibition potency exhibited by cyclopropanecarbonyl derivatives in both enzymes is probably caused by respective metal chelating and hydrogen bonding interactions at the ligand–receptor binding site. These specific interactions subsequently cause the cyclopropyl group of the molecules to adopt a fixed bisected conformation, which is unavailable for isopropylcarbonyl derivatives.
Keywords :
Conformation-restricted , enzyme inhibition , Metal chelating , hydrogen bonding
Journal title :
Bioorganic & Medicinal Chemistry Letters
Journal title :
Bioorganic & Medicinal Chemistry Letters