Title of article :
Internal Wave Resonances In Strain Flows
Author/Authors :
Leblanc، StEPhane نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2003
Pages :
-258
From page :
259
To page :
0
Abstract :
A simple mechanism of parametric excitation of internal gravity waves in a uniformly stably stratified flow under the inviscid Boussinesq approximation is presented. It consists in an oscillating planar irrotational strain field with frequency omega disturbed by three-dimensional plane waves. When the amplitude of the strain is weak, the problem is reduced to a Mathieu equation and a condition for parametric resonance is easily deduced. For a large-amplitude strain field equations are solved numerically with Floquet theory. In both cases, it is shown that parametric instabilities are excited when stratification is large enough, that is when N >1/2(omega), where N is the Brunt-V?is?l? frequency of the flow. On the other hand, when N<=1/2(omega), the flow is shown to be stable for any periodic background excitation thanks to a theorem by Joukowski. Therefore, stratification promotes instability. In the strongly stratified case N>=(omega), resonant waves satisfy the Billant-Chomaz self-similarity law and the resulting instabilities develop inside correlated quasi-horizontal layers. After discussion of the viscous effects, the theory of the paper is applied to the stability of an elliptical vortex in a rotating stratified medium.
Keywords :
groundwater , heterogeneity , conditional temporal moments , reactive transport , multirate sorption
Journal title :
Journal of Fluid Mechanics
Serial Year :
2003
Journal title :
Journal of Fluid Mechanics
Record number :
79761
Link To Document :
بازگشت