Title of article :
Viscous Potential Flow
Author/Authors :
Joseph، D. D. نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2003
Pages :
-190
From page :
191
To page :
0
Abstract :
Potential flows ... are solutions of the Navier-Stokes equations for viscous incompressible fluids for which the vorticity is identically zero. The viscous term ...vanishes, but the viscous contribution to the stress in an incompressible fluid (Stokes 1850) does not vanish in general. Here, we show how the viscosity of a viscous fluid in potential flow away from the boundary layers enters Prandtlʹs boundary layer equations. Potential flow equations for viscous compressible fluids are derived for sound waves which perturb the Navier-Stokes equations linearized on a state of rest. These linearized equations support a potential flow with the novel features that the Bernoulli equation and the potential as well as the stress depend on the viscosity. The effect of viscosity is to produce decay in time of spatially periodic waves or decay and growth in space of time-periodic waves. In all cases in which potential flows satisfy the Navier-Stokes equations, which includes all potential flows of incompressible fluids as well as potential flows in the acoustic approximation derived here, it is neither necessary nor useful to put the viscosity to zero.
Keywords :
groundwater , heterogeneity , reactive transport , conditional temporal moments , multirate sorption
Journal title :
Journal of Fluid Mechanics
Serial Year :
2003
Journal title :
Journal of Fluid Mechanics
Record number :
79791
Link To Document :
بازگشت